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Statistical fluctuations of the parametric derivative of the transmission and reflection

coefficients in absorbing chaotic cavities
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Motivated by recent theoretical and experimental works, we study the statistical fluctuations
of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic
cavities in the presence of absorption. Analytical results for the variance of the parametric derivative
of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-
right symmetric cavities. These results are valid for arbitrary number of channels, in completely
agreement with the one channel case in the absence of absorption studied in the literature.

PACS numbers:

I. INTRODUCTION

In chaotic and/or weak disordered quantum systems,
phase coherence gives rise to sample-to-sample fluctua-
tions in the most transport properties with respect to a
small perturbation in an external parameter such as an
applied magnetic field, the incident energy or the shape
of the cavity. Those fluctuations are of universal charac-
ter and depend only on the symmetry properties, such as
the presence or absence of time reversal invariance (TRI),
and/or spatial symmetry2,3,4,5.

In wave scattering experiments, such as microwave and
acoustic resonators, absorption is always present. Its
influence on the universal transmission fluctuations is
rather dramatic6.

Many works has been devoted to the effect of the ab-
sorption in the transmission T and reflection R coef-
ficients of a chaotic cavity6,7,8,9,10,11,12. However, the
derivative of those coefficients with respect to the exter-
nal parameter has not been considered in the presence of
absorption. Parametric derivatives are very important in
the characterization of mesoscopic systems with chaotic
classical limit.

Here we study the statistical fluctuations of the para-
metric derivative of the coefficients T and R, motivated
by recent experiments in microwave cavities10,12. We
consider a chaotic cavity connected to two waveguides
with an arbitrary number of channels in the presence of
arbitrary absorption, with and without TRI. We address
both asymmetric and left-right (LR) symmetric cavities.
As external parameter we will take shape deformations.
The purpose of the paper is three fold: first, those calcu-
lations help us in the understanding of the distribution of
the energy derivative of T in the presence of absorption15.
Second, they can serve as a motivation to extend the
analysis to the distribution of the derivative of T with
respect to shape deformations. Finally, the experimental
data of Ref. 10 can be used to consider energy and shape
deformations derivatives of R.

In the absence of absorption the distribution of the
parametric conductance derivative was calculated ana-
lytically by Brouwer et al13 for a quantum dot with two

single-mode point contacts. That distribution has alge-
braic tails, and in the absence (presence) of TRI it shows
a cusp (divergence) at zero; the second moment is fi-
nite (infinite). The reflection symmetric case was consid-
ered in Ref.14. There, the distribution of the parametric
derivative diverges logarithmically at zero derivative, the
exponent of the algebraic is different to that of the asym-
metric case.

The paper is organized as follows. In Sec. II we
present the main formal elements used throughout the
paper, such as the scattering matrix S and its paramet-
ric derivative in the presence of absorption. Sec. II A is
dedicated to asymmetric cavities. The Poisson’s kernel
for S and its application to chaotic scattering in the pres-
ence of absorption by means of a phenomenological model
is presented; the parametric derivative of S is defined in
terms of the Wigner time-delay matrix whose eigenval-
ues are the proper time-delays, the inverse of them be-
ing distributed according to the Laguerre ensemble. The
general structure for S and its parametric derivative for
cavities with LR symmetry is introduced in Sec. II B.
The mean and variance of the parametric velocities for T
and R, as well as the correlation between the individuals
transmission and reflection coefficients are calculated in
Sec. III A in the presence of TRI, whereas in Sec. III B
in its absence. Sec. IV is dedicated to LR-symmetric
cavities where we calculate the variances of parametric
velocities in the presence (absence) of TRI. Finally, we
present a summary and conclusions in Sec. V.

II. THE S MATRIX AND ITS PARAMETRIC

DERIVATIVE

A. Chaotic scattering by asymmetric cavities in

the presence of absorption

The scattering problem of a ballistic cavity connected
to two waveguides, each supporting N1, N2 transverse
propagating modes (see Fig. 1), can be described by the
scattering matrix S, which in the stationary case relates
the outgoing-wave to the incoming-wave amplitudes16.
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FIG. 1: A ballistic chaotic cavity connected to two leads with
N1, N2 channels. Nφ non transmitting channels are attached
to the cavity by tunnel barriers with transmission Tφ to model
the absorption.

The absorption in the cavity is modeled attaching Nφ

non transmitting channels to the cavity by means of a
tunnel barrier with transmission Tφ for each channel17.
The S matrix is N dimensional (N = N1 + N2 + Nφ)
with the structure

S =




s11 s12 s1φ

s21 s22 s2φ

sφ1 sφ2 sφφ


 ≡


 S̃

s1φ

s2φ

sφ1 sφ2 sφφ


 , (1)

where the set of indices {1}, {2}, {φ} label the N1, N2,

Nφ channels. Here, the submatrix S̃ of dimension N1+N2

describes the scattering problem of the absorbing system.
The absorption can be quantified by the parameter γ =
NφTφ in the limit Nφ → ∞, Tφ → 0 while keeping the
product constant13.

The coefficients of transmission T and reflection R are
obtained from the S matrix, actually they depend only

on the S̃ matrix, namely

T =
∑

a∈1

∑

b∈2

|Sab|2 and R =
∑

a,b∈1

|Sab|2 . (2)

We restrict ourselves to two of the three basic symme-
try classes in the Dyson’s scheme18. S is always unitary
because of flux conservation:

SS† = 11N , (3)

where 11N stands for the unit matrix of dimension N .
(That is not the the case of S̃ which is a sub-unitary ma-
trix; it represents the scattering matrix of the absorbing
system and the flux is not conserved). This case is called
“unitary” and it is designated as β = 2. In addition, in
the presence of time reversal invariance S is symmetric,

S = ST . (4)

This is the “orthogonal” case, designated as β = 1.
For systems with a chaotic classical limit, most

trasport properties are sample specific and a statistical
analysis of the quantum-mechanical problem is appropri-
ate. That study is performed by the construction of en-
sembles of physical systems, described mathematically by

ensembles of S matrices distributed according to a prob-
ability law. The starting point is a uniform distribution
where S is a member of one of the circular ensembles:
circular unitary (orthogonal) ensemble, CUE (COE), for
β = 2 (β = 1)23.

In the presence of direct processes, the information-
theoretic approach of Refs. 19, 20 leads to a S matrix
distributed according to the Poisson’s kernel21

P (S) = C

[
det

(
11N − 〈S〉〈S〉†

)](βN+2−β)/2

|det (11N − S〈S〉†)|βN+2−β
, (5)

where 〈S〉 is the ensemble averaged S matrix; it describes
the prompt response of the system arising from direct

processes.
A useful construction of the Poisson’s ensemble is ob-

tained when the cavity is connected to leads by tunnel
barriers22. In the case we are concerned with only the
fictitious waveguide contains a tunnel barrier, such that
the averaged S matrix can be written as

〈S〉 =




0N1
0 0

0 0N2
0

0 0
√

1 − Tφ11Nφ


 . (6)

As before, 11n stands for the unit matrix of dimensions n
and 0n for the n-dimensional null matrix.

In what follows we restrict ourselves to the case when
Tφ = 1, i.e. P (S) is just a constant and the S matrix is
uniformly distributed. In such a case, the absorption pa-
rameter takes only integer values (γ = Nφ), which means
moderate and strong absorption. For the present calcu-
lations non-integer values of γ are obtained by simple
extrapolation.

The parametric derivative of S with respect to a pa-
rameter q, that can be the incident energy E or a shape
deformation parameter X , is defined as24

∂S

∂q
= i S1/2 Qq S1/2 (7)

where Qq is an N ×N Hermitian matrix, real symmetric
in the presence of time-reversal symmetry. QE is pro-
portional to a symmetrized form of the Wigner-Smith
time-delay matrix, whose eigenvalues are also the proper
delay times. QX is defined in analogy to QE.

For classically chaotic cavities the joint distribution of
S, QE and QX is24

P (S, QE , QX) ∝ (detQE)−2βN−3(1−β/2)

× exp

{
−β tr

[
π

∆
Q−1

E +
( π

2∆
Q−1

E QX

)2
]}

, (8)

where ∆ is the mean level spacing and Xc is a typical
scale for X . S is independent of QE , QX and it is uni-
formly distributed in the space of scattering matrices,
i.e. P (S) of Eq. (5) is just a constant. QX is Gaussian
distributed with a width set by QE .
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A convenient parametrization for QX is given by24

QX = Ψ−1†HΨ−1 (9)

where H is a N × N Hermitian matrix for β = 2, real
symmetric for β = 1, that have a Gaussian distribution
with zero mean and variance

〈HabHcd〉 =

{
4 δadδbc β = 2
4 (δadδbc + δacδbd) β = 1

, (10)

as can be seen by substitution of Eqs. (9) and (11) into
Eq. (8). Ψ is a N × N matrix, complex in the unitary
case, real in the orthogonal one, such that

QE =
2π

∆
Ψ−1†Ψ−1 ≡ 2π

∆
Q, (11)

where we have defined Q = Ψ−1†Ψ−1.
The matrix W of eigenvectors that lead Q to the diag-

onal form

Q = Wτ̂W †, (12)

is uniformly distributed in the unitary (orthogonal)
group for β = 2 (β = 1), independent of S and τ̂ .
The elements of τ̂ , {τn} (n = 1, . . . , N), are the proper
time delays in dimensionless units; the inverse of them,
xn = 1/τn (n = 1, . . . , N), are distributed according to
the Laguerre ensemble24

P (x1, . . . , xN ) ∝
∏

a<b

|xa − xb|β
∏

c

xβN/2
c e−βxc/2 . (13)

For the calculations we are interested here, it is con-
venient to parametrize the S matrix and its parametric
derivative as

S = UV,
∂S

∂q
= i UQqV (q = E, X), (14)

where U , V are the most general N × N unitary matri-
ces in the unitary case (β = 2), while V = UT in the
orthogonal one (β = 1).

B. Chaotic scattering by symmetric cavities in the

presence of absorption

For a system with reflection symmetry, as shown in
Fig. 2, the S matrix is block diagonal in a basis of def-
inite parity with respect to reflections, with a circular
ensemble in each block3,4.

In the presence of absorption the S matrix, that de-
scribes the scattering of LR ballistic cavity connected to
two leads, is of dimension N = 2N1 + Nφ, where N1 are
the number of channels in each lead (the two leads have
the same number of channels and are symmetrically posi-
tioned); Nφ are the number of absorption channels that

1N N1

φN

FIG. 2: A ballistic chaotic symmetric cavity connected to two
leads supporting N1 channels. Nφ non transmitting channels
are attached to the cavity to model the absorption.

we assume symmetrically distributed in the cavity. In
that case, the general structure for S is4

S =

(
r′ t′

t′ r′

)
, (15)

where r′, t′ are N ′ ×N ′ matrices, with N ′ = N1 + Nφ/2.
They represent the reflection and transmission matrices,
respectively, associated to the matrix given by (15), and
not for the physical cavity. The physical S matrix is a
N1 × N1 submatrix of that given by Eq. (15).

S-matrices of the form given by Eq. (15), which satisfy
(3) are appropriate for systems with reflection symmetry
in the absence of TRI. With the additional condition (4)
it is appropriate for LR-systems in the presence of TRI.
However, when TRI is broken by a uniform magnetic
field, the problem of symmetric cavities is mapped4 to
the one of asymmetric cavities with β = 1 but T replaced
by R.

Matrices with the structure (15) can be brought to the
block-diagonal form

S = RT
0

(
S1 0
0 S2

)
R0 , (16)

where R0 is the rotation matrix

R0 =
1√
2

(
11N ′ 11N ′

−11N ′ 11N ′

)
. (17)

S1, S2 are the most general N ′ ×N ′ unitary (for β = 2),
and symmetric (for β = 1) matrices. They have the
structure given by Eq. (1) being statistically uncorre-
lated and uniformly distributed: CUE (β = 2), COE
(β = 1).

Then, from (16) the transmission and reflection coef-
ficients for LR-symmetric ballistic cavity in the presence
of absorption are given by

T =
1

4

N1∑

a,b=1

|S1ab − S2ab|2 and (18)

R =
1

4

N1∑

a,b=1

|S1ab + S2ab|2 , (19)
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respectively.
The parametric derivative of S is defined through the

parametric derivatives of S1 and S2 as in Eq. (7). The
joint distribution (8) is satisfied for each matrix Sj j = 1,
2. Finally, they can be parametrized as in Eq. (14).

III. MEAN AND VARIANCE OF THE

PARAMETRIC DERIVATIVES OF T AND R FOR

ASYMMETRIC CAVITIES

In this section we study the mean and variance of the
parametric velocities of the transmission and reflection
coefficients, namely, ∂T/∂q and ∂R/∂q. Here we restrict
ourselves to asymmetric cavities, such that T and R are
given by Eq. (2). For convenience we define the proba-
bility to go from channel b to channel a as

σab = |Sab|2 , (20)

such that

∂T

∂q
=

∑

a∈1

∑

b∈2

∂σab

∂q
and (21)

∂R

∂q
=

∑

a,b∈1

∂σab

∂q
. (22)

Substituting the parametrization (14) and using the
results of Ref. 26 we average over the matrices U , V
for β = 2, or U (V = UT ) for β = 1. It is sim-
ple to see that the average of ∂σab/∂q is zero; hence
〈∂T/∂q〉 = 〈∂R/∂q〉 = 0. The fluctuations require a
more sophisticated analysis.

We define the correlation coefficient as

Cq
ab
a′b′ =

〈
∂σab

∂q

∂σa′b′

∂q

〉
, (23)

and write the second moments of ∂T/∂q and ∂R/∂q as
〈(

∂T

∂q

)2
〉

=
∑

a,a′∈1

∑

b,b′∈2

Cq
ab
a′b′ (24)

〈(
∂R

∂q

)2
〉

=
∑

a,a′∈1

∑

b,b′∈1

Cq
ab
a′b′ , (25)

The Cq
ab
a′b′ is given by, explicitly written in terms of the

S matrix elements,

Cq
ab
a′b′ = 2Re

[〈
SabS

∗
a′b′

∂S∗
ab

∂q

∂Sa′b′

∂q

〉

+

〈
S∗

abS
∗
a′b′

∂Sab

∂q

∂Sa′b′

∂q

〉]
. (26)

A. The orthogonal case: β = 1

1. Correlation coefficient of ∂σab/∂q

First, we calculate the correlation between the different
coefficients ∂σab/∂q. We use the parametrization (14) for

V = UT in Eq. (26) to write

Cq
ab
a′b′ = 2 Re

N∑

α,β=1

N∑

α′,β′=1

〈
QqαβQqα′β′

〉

×
N∑

c,c′=1

[M (α, β, c, c) − M (c, c, α, β)] , (27)

where for simplicity we define the coefficients

M(α, β, γ, δ) ≡ Maα,bβ,a′c′,b′c′

aγ,bδ,a′α′,b′β′

≡
〈
UaγUbδUa′α′Ub′β′U∗

aαU∗
bβU∗

a′c′U
∗
b′c′

〉
. (28)

The first (last) two places, α, β, (γ, δ) of the argument
on the left-hand side refers to the second and fourth po-
sitions in the upper (lower) indices of the coefficients M
that appear in Eq. (28). As we can see in App. A, the
rest of the indices are not modified in the construction of
Eq. (27). Those coefficients M were calculated in Ref.
26 [see Eq. (6.3) of that reference] that we apply to our
particular case in App. A. The sum with respect c, c′

appearing in the second line of Eq. (27) can be written
as

N∑

c,c′=1

[M(α, β, c, c) − M(c, c, α, β)]

= −n1 δβ
αδβ′

α′ − n2 δα′

α δβ′

β + n3 δβ′

α δα′

β , (29)

such that Eq. (27) depends on n1, and n2, n3 through the
difference n3 − n2 = Nn1 [see Eqs. (A8)-(A10)], which
means that n1 is the only coefficient we need. It is given
by (see App. A)

n1 =
1

N2(N2 − 1)(N + 2)(N + 3)

{
2(1 + δb

a)(1 + δb′

a′)

+ (N + 1) (N + 2)
(
δa′

a δb′

b + δb′

a δa′

b

)2

− (N + 1)
[
δa′

b + δb′

b + δa′

a + δb′

a

+2 δb
aδ

b′

a′

(
δb′

b δa
a′ + δa′

b δa
b′

)
+ 2

(
δb′

b δb
a′δa′

b′

+ δb
aδa′

b δa
a′ + δb

aδb′

b δa
b′ + δb′

a δa
a′δa′

b′

)]}
(30)

Then, Eq. (27) is written as

Cq
ab
a′b′ = 2 n1 Re Kq , (31)

where

Kq = N

N∑

α=1

〈(
Q2

q

)
αα

〉
−

N∑

α,β=1

〈
QqααQqββ

〉
. (32)

KX is calculated substituting the parametrization (9)
into Eq. (32), and performing the average over the matrix
H with the help of Eq. (10) for β = 1; the result depends
on the Q matrix only, as defined in Eq. (11). KE is
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directly written in terms of Q. We write those results in
a single equation as

Kq = 4

[
(N − 2) δqX +

π2

∆2
NδqE

] N∑

α=1

〈(
Q2

)
αα

〉

+ 4

[
NδqX − π2

∆2
δqE

] N∑

α,β=1

〈QααQββ〉 , (33)

where we have introduced the Kronecker’s delta δqq′ to
distinguish the result for the parameters X , E. Now, we
write Q in its diagonal form as Eq. (12), Kq becomes
independent of the unitary matrix W , the average over
which is easy to do; the result for Kq depends on only
two eigenvalues of Q:

Kq = 4N (N − 1)

[(
2δqX +

π2

∆2
δqE

) 〈
τ2
1

〉

+

(
NδqX − π2

∆2
δqE

)
〈τ1τ2〉

]
. (34)

Finally, by direct integration using Eq. (13) for β = 1, it
is simple to see that

〈τ2
1 〉 =

2N !

(N − 2) (N + 1)!
, 〈τ1τ2〉 =

(N − 1)!

(N + 1)!
. (35)

Then, Eq. (34), give us

KX =
4(N − 1)N(N + 2)

(N − 2)(N + 1)
, KE =

π2

∆2

KX

N
. (36)

By combination of Eqs. (30), (31), (36), we arrive to
the desired results for the correlation coefficients, namely

CX
ab
a′b′ =

8

(N − 2)N (N + 1)
2
(N + 3)

×
{
2

(
1 + δb

a

) (
1 + δb′

a′

)

+ (N + 1) (N + 2)
(
δa′

a δb′

b + δb′

a δa′

b

)2

− (N + 1)
[
δa′

b + δb′

b + δa′

a + δb′

a

+2 δb
aδ

b′

a′

(
δb′

b δa
a′ + δa′

b δa
b′

)
+ 2

(
δb′

b δb
a′δa′

b′

+ δb
aδa′

b δa
a′ + δb

aδb′

b δa
b′ + δb′

a δa
a′δa′

b′

)]}
(37)

CE
ab
a′b′ =

π2

∆2

CX
ab
a′b′

N
. (38)

The correlation coefficients depend on the absorption
parameter Nφ through N = N1 + N2 + Nφ, that can
take integer values only. Extrapolation to an arbitrary
absorption is done by replacing Nφ by a non-integer num-
ber γ, such that N → η = N1 + N2 + γ. For the rest of
this subsection we will assume that extrapolation.

From Eqs. (37) and (38) we analyze several cases of
interest. From one side, a′ = a ∈ 1, b′ = b ∈ 2, give the

variances of the parametric derivatives of the one channel
transmission coefficient ∂σab/∂q (q = X, E); those are

〈(
∂σab

∂X

)2
〉

=
8(η2 + η + 2)

(η − 2)η(η + 1)2(η + 3)
(39)

〈(
∂σab

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂σab

∂X

)2
〉

, (40)

For very strong absorption they behave as
〈(

∂σab

∂X

)2
〉

∼ γ−3,

〈(
∂σab

∂E

)2
〉

∼ γ−4. (41)

We call this the strongly correlated case.
Now, we present uncorrelated cases. One of them is

obtained by making a′ = a ∈ 1, b′ 6= b (b, b′ ∈ 2). In the
limit of strong absorption they behave as

〈
∂σab

∂X

∂σab′

∂X

〉
∼ γ−4,

〈
∂σab

∂E

∂σab′

∂E

〉
∼ γ−5 (42)

that are small compared with Eqs. (41). When all the
indices are different they have the behaviour

〈
∂σab

∂X

∂σa′b′

∂X

〉
∼ γ−5,

〈
∂σab

∂E

∂σa′b′

∂E

〉
∼ γ−6.

(43)
We conclude that for strong absorption, up to the order

of 〈(∂σab/∂q)2〉, the correlations between the elements
∂σab/∂q, for a ∈ 1, b ∈ 2, are very small. Those quan-
tities enter in the construction of ∂T/∂q [see Eq. (21)]
and can be treated as N1N2 uncorrelated variables with
the same distribution. This is a relevant simplification
when the distribution of the parametric derivative of the
total transmission coefficient is desired, assuming the one
for each ∂σab/∂q is known. That is the case of Ref. 15
where the numerical evidence shows an exponential de-
cay for P (∂σab/∂q), P (∂T/∂q) being calculated in a very
straightforward manner. Eqs. (39), (40) can be used to
obtain the decay constant as a function of γ.

2. Fluctuations of the paremetric derivative of the

transmission and reflection coefficients

The sums of Eqs. (37), (38) with respect to a, a′ ∈ 1,
b, b′ ∈ 2 lead to the variances of the parametric deriva-
tives of T [see Eq. (24)],

〈(
∂T

∂X

)2
〉

= 8
N1N2 [(η + 1)(γ + 2) + 2N1N2]

(η − 2)η(η + 1)2(η + 3)

(44)〈(
∂T

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂T

∂X

)2
〉

. (45)

Consider the particular case N1 = N2 = 1 [see Eqs.
(39), (40)]. When γ = 0, the variance of ∂T/∂q diverges.
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This is in agreement with Ref. 13 where the complete
distribution of of the parametric derivative of T , in the
absence of absorption, was obtained. The distribution
has long tails with second moment divergent. We see
that absorption suppress that divergence.

For the reflection coefficient we obtain the variances of
its parametric derivatives by the sum of Eqs. (37), (38)
with respect to a, a′, b, b′ ∈ 1 [see Eq. (25)]. The results
are

〈(
∂R

∂X

)2
〉

= 16
N1(N1 + 1)(η − N1)(η − N1 + 1)

(η − 2)η(η + 1)2(η + 3)

(46)〈(
∂R

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂R

∂X

)2
〉

. (47)

We analyze the case of N1 = 1 and N2 = 0, relevant
to the experimental data of Ref. 10. In the absence of
absorption 〈(∂R/∂q)2〉 = 0 as expected (R = 1). For
γ = 1, 〈(∂R/∂q)2〉 is infinite; making the appropriate
correspondence, the distribution for ∂R/∂q is the same
as that obtained in Ref. 13. The divergence in the second
moment of 〈(∂R/∂q)2〉 is suppresed for γ > 1. It is clear
that for γ < 1 our results do not apply since 〈(∂R/∂q)2〉
becomes negative.

B. The unitary case: β = 2

1. Correlation coefficient of ∂σab/∂q

The unitary case is simpler than the orthogonal
one. Following the same procedure, we substitute the
parametrization (14) in Eq. (26) to write

Cq
ab
a′b′ = 2 Re

N∑

α,β=1

N∑

α′,β′=1

[〈
QqβαQqα′β′

〉

×
N∑

c,c′=1

Maα,a′c′

ac,a′α′ M
βb,c′b′

cb,β′b′

−
〈
QqαβQqα′β′

〉 N∑

c,c′=1

Mac,a′c′

aα,a′α′M
cb,c′b′

βb,β′b′

]
, (48)

where we have defined

Ma′b′,c′d′

ab,cd ≡
〈
U ′

abU
′
cdU

′∗
a′b′U

′∗
c′d′

〉
, (49)

with U ′ a unitary matrix (U or V ). Those coefficients
have been calculated in Ref. 26, and read

Ma′b′,c′d′

ab,cd =
1

N2 − 1

[ (
δa′

a δc′

c δb′

b δd′

d + δc′

a δa′

c δd′

b δb′

d

)

− 1

N

(
δa′

a δc′

c δd′

b δb′

d + δc′

a δa′

c δb′

b δd′

d

) ]
. (50)

After we substitute Eq. (50) into Eq. (48) and sum the
dummy inidices

Cq
ab
a′b′ =

2
[
1 − N

(
δa′

a + δb′

b

)
+ N2δa′

a δb′

b

]

N2(N2 − 1)2
Re Kq , (51)

where

Kq = N

N∑

α=1

〈
(Q2

q)αα

〉
−

N∑

α,β=1

〈
QqααQqββ

〉
. (52)

To calculate KX we use of the parametrization (9),
perform the average over H that can be done by using
Eq. (10). Again, the result depends only on Q. Also,
KE can be written in terms of Q. A single Those results
are expressed by a single equation

Kq = 4

(
−δqX +

π2

∆2
NδqE

) N∑

α=1

〈
(Q2)αα

〉

+ 4

(
NδqX − π2

∆2
δqE

) N∑

α,β=1

〈QααQββ〉 . (53)

Now, we write Q in its diagonal form as in Eq. (12).
The result for Kq is independent of the matrix W , the
average over wich is easy to do:

Kq = 4N(N − 1)

[(
δqX +

π2

∆2
δqE

) 〈
τ2
1

〉

+

(
NδqX − π2

∆2
δqE

)
〈τ1τ2〉

]
. (54)

Again, by direct integration using Eq. (13) we get

〈τ2
1 〉 =

2N(N − 2)!

(N + 1)!
, 〈τ1τ2〉 =

(N − 1)!

(N + 1)!
. (55)

such that

KX = 4 N , KE = 4
π2

∆2
=

π2

∆2

KX

N
. (56)

Eq. (51) lead us to

CX
ab
a′b′ =

8
[
1 − N

(
δa′

a + δb′

b

)
+ N2δa′

a δb′

b

]

N(N2 − 1)2
(57)

CE
ab
a′b′ =

π2

∆2

CX
ab
a′b′

N
. (58)

In similar manner to the β = 1 case, from here up
to the end of this subsection we make the extrapolation
Nφ → γ, such that N → η = N1 + N2 + γ.

We analyze several cases of interest. Firstly, a corre-
lated case is obtained making a′ = a ∈ 1, b′ = b ∈ 2,
which give the variances of ∂σab/∂q (q = X, E); those
are

〈(
∂σab

∂X

)2
〉

=
8

η(η + 1)2
(59)

〈(
∂σab

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂σab

∂X

)2
〉

, (60)
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that for strong absorption they show the behaviour given
by Eq. (41).

Uncorrelated cases are obtained when a′ = a ∈ 1,
b′ 6= b (b, b′ ∈ 2), and when all the indices are differ-
ent: for large γ they go as Eqs. (42), (43), respectively.
Those quantities are very small compared to the order
of 〈(∂σab/∂q)2〉, meaning that for very large γ the N1N2

quatities ∂σab/∂q (a ∈ 1, b ∈ 2), can be treated as uncor-
related variables with the same distribution P (∂σab/∂q),
when the distribution of the parametric derivative of
the total transmission coefficient is desired. Numerical
evidence15 also shows a exponential decay of P (∂σab/∂q)
for strong absorption; the decay constant depends on γ
and on the symmetry class (β = 1 or 2), and can be
obtained from the variance of ∂σab/∂q.

2. Fluctuations of the paremetric derivatives of T and R

We obtain the variances of the parametric derivative
of the total transmission coefficient by the sum of Eqs.
(57), (58) with respect to the indices a, a′ ∈ 1, b, b′ ∈ 2,
[see Eq. (24)]. The results are

〈(
∂T

∂X

)2
〉

=
8N1N2 (η γ + N1N2)

η (η2 − 1)2
(61)

〈(
∂T

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂T

∂X

)2
〉

(62)

Again, consider the case N1 = N2 = 1 [see Eqs. (59),
(60)]. In contrast with the β = 1 case, 〈(∂T/∂q)2〉 does
not diverges for γ = 0. This is in agreement with Ref.
13 too.

Similarly, we get the fluctuations for the parametric
derivatives of R from Eq. (25) using Eqs. (57), (58);
they are

〈(
∂R

∂X

)2
〉

=
8N2

1 (η − N1)
2

η(η2 − 1)2
(63)

〈(
∂R

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂R

∂X

)2
〉

(64)

Also, in contrast with the β = 1 case, 〈(∂R/∂q)2〉 does
not show any divergence.

IV. VARIANCE OF THE PARAMETRIC

DERIVATIVE OF T FOR LEFT-RIGHT

SYMMETRIC CAVITIES

In this section we will concentrate on the variance
of the parametric transmission velocity, ∂T/∂X for LR-
symmetric cavities. The result for 〈(∂T/∂E)2〉 is similar
to Eq. (62). Also, because of the LR-symmetry, it is
sufficient to consider T , the results for R are equivalent.

For LR-symmetric cavities we define the transmission
probability to go from channel a to channel b as (note
that in this case a and b can in principle be equal)

σ′
ab =

1

4
|S1ab − S2ab|2

=
1

4
[σ1ab + σ2ab − 2 Re fab] , (65)

where the prime on the left hand side indicates that it
is defined for the one channel transmission coefficient for
LR-symmetric cavities, while σ1, σ2 are defined by Eq.
(20) and correspond to S1, S2 matrices; fab is an inter-
ference term given by

fab = S1ab S∗
2ab . (66)

Now, the parametric derivative of T cand be written
as

∂T

∂X
=

N1∑

a,b=1

∂σ′
ab

∂X
(67)

and its fluctuation as
〈(

∂T

∂X

)2
〉

=

N1∑

a,b=1

N1∑

a′,b′=1

C′
X

ab
a′b′ , (68)

where, in a analogy to Eq. (23), we have defined the
correlation coefficient for the symmetric case as

C′
X

ab
a′b′ =

〈
∂σ′

ab

∂X

∂σ′
a′b′

∂X

〉
. (69)

From Eqs. (65) and (69) the correlation coefficient can
be expressed as

C′
X

ab
a′b′ =

1

8

(
C1X

ab
a′b′ + Re FX

ab
a′b′

)
, (70)

where C1X
ab
a′b′ is given by Eq. (37) for β = 1, (57) for

β = 2, with N replaced by N ′ = N1 + Nφ/2, and

FX
ab
a′b′ =

〈
∂fab

∂X

∂f∗
a′b′

∂X

〉
. (71)

To arrive at Eq. (70) we used the fact that S1, S2 are
uncorrelated but equally and uniformly distributed, such
that C2X

ab
a′b′ = C1X

ab
a′b′ , 〈(∂σ1ab/∂X)(∂σ2a′b′/∂X)〉 =

0, 〈(∂σjab/∂X)(∂fa′b′/∂X)〉 = 0 for j = 1, 2, and
〈(∂fab/∂X)(∂fa′b′/∂X)〉 = 0.

Then, it is needed to calculate F ab
a′b′ that explicitely

written in terms of S1, S2 matrices elements is

FX
ab
a′b′ = 2

[
〈S1abS

∗
1a′b′〉

〈
∂S∗

2ab

∂X

∂S2a′b′

∂X

〉

+

〈
S1ab

∂S∗
1a′b′

∂X

〉〈
S2a′b′

∂S∗
2ab

∂X

〉]
(72)

We proced to calculate 〈(∂T/∂X)2〉 in the presence and
absence of TRI. Also, we consider the case when TRI is
broken by a magnetic field.



8

A. Presence of time reversal invariance

1. Correlations of ∂σ′

ab/∂X

It has been shown in Ref. 14 that the only term of Eq.
(72) different from zero is

〈
∂S∗

j ab

∂X

∂Sja′b′

∂X

〉
=

4
(
δa′

a δb′

b + δb′

a δa′

b

)

N ′(N ′ + 1)

×




N ′∑

α=1

〈(
Q2

)
αα

〉
+

N ′∑

α,β=1

〈QααQββ〉



 . (73)

We subtitute Eq. (73) into Eq. (72) and digonalize Q
as in Eq. (12). Eq. (13) with N replaced by N ′, gives
〈τ1〉 = 1/N ′ by direct integration. Then, we get

FX
ab
a′b′ =

8
(
N ′2 + N ′ + 2

) (
δa′

a δb′

b + δb′

a δa′

b

)2

(N ′ − 2)N ′ (N ′ + 1)3
. (74)

Finally, the last equations together with Eqs. (37),
(38) with N ′ intead of N leads to

C′
X

ab
a′b′ =

1

(N ′ − 2)N ′ (N ′ + 1)
2
(N ′ + 3)

×
{
2

(
1 + δb

a

) (
1 + δb′

a′

)

+ (N ′ + 1) (N ′ + 2)
(
δa′

a δb′

b + δb′

a δa′

b

)2

− (N ′ + 1)
[
δa′

b + δb′

b + δa′

a + δb′

a (75)

+2 δb
aδ

b′

a′

(
δb′

b δa
a′ + δa′

b δa
b′

)
+ 2

(
δb′

b δb
a′δa′

b′

+ δb
aδa′

b δa
a′ + δb

aδb′

b δa
b′ + δb′

a δa
a′δa′

b′

)]}

+
N ′2 + N ′ + 2

(N ′ − 2)N ′ (N ′ + 1)
3

(
δa′

a δb′

b + δb′

a δa′

b

)2

.

From here up to the rest of this subsection we will
assume the extrapolation to arbitrary absorption: Nφ →
γ, N ′ → η′ = N1 + γ/2.

Some cases are of particular interest. For simplicity
consider only the parametric variation with respect to
X . The variance of the parametric derivative of the one-
channel transmission coefficient σ′

aa is
〈(

∂σ′
aa

∂X

)2
〉

=
4η′ (η′ − 1)

(η′ − 2) η′ (η′ + 1)
2
(η′ + 3)

+
4

(
η′2 + η′ + 2

)

(η′ − 2) η′ (η′ + 1)
3 . (76)

σ′
ab represents a channel to channel transmission coeffi-

cient too; its parametric derivative variance is
〈(

∂σ′
ab

∂X

)2
〉

=
η′2 + η′ + 2

(η′ − 2)η′(η′ + 1)2

(
1

η′ + 3
+

1

η′ + 1

)
.

(77)

The two variances are in principle different because at
level of the matrices S1, S2, σ′

aa represents a reflection
into the channel a, while σ′

ab represents a transmission
between the channels a, b. In fact, the first term on the
right hand side of Eqs. (76), (77) are the same, except
by a factor of 8, as Eqs. (46) (with N1 = 1), (39), respec-
tively, replacing η′ → η. The second term comes from
interference between S1 and S2 [see Eq. (70)]. However,
for strong absorption, 〈(∂σ′

aa/∂X)2〉, 〈(∂σ′
ab/∂X)2〉,

go as γ−3. Up to this order of magnitud, the cor-
relation coefficients for ∂σab/∂X (a, b = 1, . . . , N1)
can be neglected: 〈(∂σ′

aa/∂X)(∂σ′
a′b′/∂X)〉

and 〈(∂σ′
ab/∂X)(∂σ′

ab′/∂X)〉 go as γ−4; while
〈(∂σ′

aa/∂X)(∂σ′
a′a′/∂X)〉, 〈(∂σ′

aa/∂X)(∂σ′
a′b′/∂X)〉,

and 〈(∂σ′
ab/∂X)(∂σ′

a′b′/∂X)〉 go as γ−5.
We conclude that the variables ∂σ′

ab/∂q, for a, b =
1, . . . , N1 are uncorrelated for strong absorption. They
enter in the in the construction of ∂T/∂q [see Eq. (67)],
the distribution of which is esyly obtained when the one
for ∂σ′

ab/∂q is known. That is the case of Ref. 15.

2. Variance of ∂T/∂X

Using Eq. (68) we obtain the variance of the paramet-
ric derivative of T . The result for q = X , E are

〈(
∂T

∂X

)2
〉

=
2N1(N1 + 1) (η′ − N1) (η′ − N1 + 1)

(η′ − 2) η′ (η′ + 1)2 (η′ + 3)

+
2N1(N1 + 1)

(
η′2 + η′ + 2

)

(η′ − 2) η′ (η′ + 1)
3 (78)

〈(
∂T

∂E

)2
〉

=
π2

∆2

1

η′

〈(
∂T

∂X

)2
〉

(79)

The effect of the LR-symmetry is clearly noted. The
first term of the last equations are similar to Eqs. (46),
(47) but for the variance of parametric derivative of R
for asymmetric cavities. That is because ∂T/∂q for LR-
symmetric cavity is similar to ∂R/∂q for asymmetric cav-
ity as can be seen by comparison of Eq. (67) with Eqs.
(22). The second term in Eqs. (78), (79) comes from the
interference term of matrices S1, S2 [see Eq. (70)].

For instance, consider a LR-symmetric chaotic cavity
connected to two leads each one supporting one channel
(N1 = 1). 〈(∂T/∂q)2〉 diverges for γ = 2, but it is finite
for γ > 2. For 0 ≤ γ < 2 it is not defined.

B. Absence of time reversal invariance

1. Correlations of ∂σ′

ab/∂q

Again, the only term of Eq. (72) different from zero
is14
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〈
∂S∗

j ab

∂X

∂Sja′b′

∂X

〉
=

4δa′

a δb′

b

N ′2




N ′∑

α,β=1

〈QααQββ〉


 (80)

Now, we subtitute Eq. (80) into Eq. (72); the digonal-
ization of Q, Eq. (12), gives

FX
ab
a′b′ =

8
(
N ′2 + 1

)
δa′

a δb′

b

N ′3
(
N ′2 − 1

) , (81)

where we used Eq. (55) and the result 〈τ1〉 = 1/N ′ which
can be obtained by direct integration from Eq. (13).
Finally, Eqs. (81), (57), and (58) with N ′ intead of N ,
gives

C′
X

ab
a′b′ =

[
1 − N ′

(
δa′

a + δb′

b

)
+ N ′2δa′

a δb′

b

]

N ′
(
N ′2 − 1

)2

+

(
N ′2 + 1

)
δa′

a δb′

b

N ′3
(
N ′2 − 1

)

(82)

Again, we assume the extrapolation to arbitrary ab-
sorption: Nφ → γ, N ′ → η′ = N1 + γ/2.

For simplicity consider only the parametric variation
with respect to X . The variances of the parametric
derivative of the channel to channel transmission coef-
ficient is given by 〈(∂σ′

ab/∂X)2〉 = 〈(∂σ′
aa/∂X)2〉,

〈(
∂σ′

aa

∂X

)2
〉

=
1

η′ (η′ + 1)
2 +

η′2 + 1

η′3
(
η′2 − 1

) . (83)

The first term on the right hand side of Eqs. (83) is the
same, except by a factor 8, as Eq. (59), replacing η′ → η.
The second term comes from interference between S1 and
S2 [see Eq. (70)]. For strong absorption, 〈(∂σ′

aa/∂X)2〉
goes as γ−3. Also, as γ increases the quantities ∂σ′

ab/∂X ,
for a, b = 1, . . . , N1, become uncorrelated.

2. Variance of ∂T/∂q

Using Eq. (68) we obtain the variance of the paramet-
ric derivative of T . The result are

〈(
∂T

∂X

)2
〉

=
N2

1 (η′ − N1)
2

η′
(
η′2 − 1

)2 +
N2

1

(
η′2 + 1

)

η′3
(
η′2 − 1

) (84)

〈(
∂T

∂E

)2
〉

=
π2

∆2

1

η′

〈(
∂T

∂X

)2
〉

(85)

The effect of the LR-symmetry is clearly noted. The
first term of the last equations are similar to Eqs. (63),
(64) for the variance of the parametric derivative of R

for asymmetric cavities. That is because ∂T/∂q for LR-
symmetric cavity is similar to ∂R/∂q for asymmetric cav-
ity as can be seen by comparison of Eq. (67) with Eqs.
(22). The second term in Eqs. (84), (85) comes from the
interference term of matrices S1, S2 [see Eq. (70)].

Consider a LR-symmetric chaotic cavity connected to
two leads each one supporting one channel (N1 = 1).
〈(∂T/∂q)2〉 diverges for γ = 0, but is finite for γ > 0.
This is in contrast with the asymmetric case for β = 2.

C. TRI broken by a magnetic field

When TRI is broken by a magnetic field, the problem
of a LR-symmetric cavity is reduced to the problem of
asymmetric cavity with β = 1 symmetry but the roles of
T and R interchanged, such that the parametric deriva-
tive of T is given Eq. (22). All the elements ∂σab/∂q, for
a, b = 1, . . . , N1, are uncorrelated in the strong absorp-
tion limit.

In this case, the variance of ∂T/∂q, for q = X , E are
given by

〈(
∂T

∂X

)2
〉

= 16
N1(N1 + 1)(η − N1)(η − N1 + 1)

(η − 2)η(η + 1)2(η + 3)

(86)〈(
∂T

∂E

)2
〉

=
π2

∆2

1

η

〈(
∂T

∂X

)2
〉

. (87)

For a cavity connected to two leads each one support-
ing one open channel, 〈(∂T/∂q)2〉 diverges for γ = 0, also
in contrast with the β = 2 case for asymmetric cavities.

V. SUMMARY AND CONCLUSIONS

The purpose of the present paper has been to study the
statistical fluctuations of the derivative, with respect to
the incident energy E and shape deformations X , of the
transmission T and reflection R coefficients in ballistic
chaotic cavities with absorption. We consider asymmet-
ric (Sec. III) and left-right (LR)-symmetric (Sec. IV)
systems in the presence and absence of time-reversal in-
variance (TRI). For all the cases fluctuations of the en-
ergy derivative are smaller than those with derivative
with respect to shape deformations. For instance, for
T we find 〈(∂T/∂E)2〉 ∝ 〈(∂T/∂X)2〉/η, where η =
N1 + N2 + γ; N1, N2 are the number of channels in
the waveguides on the left, right, respectively; γ is the
absorption strenght. For strong absorption, 〈(∂T/∂E)2〉
goes to zero faster than 〈(∂T/∂X)2〉.

In the case of an asymmetric cavity connected to two
leads each one with one open channel (N1 = N2 = 1), at
zero absorption, we find that 〈(∂T/∂q)2〉 (q = E, X) is
finite when no TRI is present, but is infinite in the pres-
ence of TRI. Although our calculations are not valid for
weak absorption those results agree with Ref. 13 where
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a long tails distribution for ∂T/∂q was obtained. The
divergence in the second moment is suppressed by ab-
sorption and we expect that the long tails dissapear at
sufficiently large γ (see below).

The case of the last paragraph corresponds also to a
case of an asymmetric cavity with one-lead-one-channel
(N1 = 1, N2 = 0) with one channel of absorption, i.e
γ = 1. In this case, 〈(∂R/∂q)2〉 is infinite (finite) in the
presence (absence) of TRI. The divergence disapear for
γ > 1. 〈(∂R/∂q)2〉 = 0 at zero absorption, as should be,
and it is not defined for 0 < γ < 1.

For a left-right (LR)-symmetric cavity connected to
two waveguides with one open channel each one (N1 =
N2 = 1), 〈(∂T/∂q)2〉 is not defined for 0 ≤ γ < 2, di-
verges at γ = 2, and remains finite for γ > 2 in the
presence of TRI. In the absence of TRI, the results are
different in the presence or absence of an applied mag-
netic field. However, in both cases 〈(∂T/∂q)2〉 diverges at
γ = 0, in contrast with the asymmetric case; 〈(∂T/∂q)2〉
is finite for γ > 0. Again, a long tails distribution for
∂T/∂q is expected at zero absorption for both presence
and absence of TRI. Also, we expect the long tails are
suppressed at sufficiently strong absorption (see below).

The correlation coefficients for the parametric veloci-
ties of the transmission probability σab [Eq. (20)] from
channel a to channel b, for asymmetric cavities, were cal-
culated. For strong absorption, we found that ∂σab/∂q,
for a ∈ 1, b ∈ 2, are uncorrelated variables. They en-
ter in the construction of ∂T/∂q. That is a relevant
simplification when the distribution P (∂T/∂q) is desired
assuming that P (∂σab/∂q) is known. That is the case
of Ref. 15 where a numerical simulation shows an ex-
ponential decay for P (∂σab/∂E). The decay constant
can be obtained directly from the variance of ∂σab/∂E:
〈(∂Tab/∂E)2〉 = 2/λ2

β. A similar behaviour for ∂σab/∂X
is expected. This is in contrast with the case of zero
absorption where a long tail distribution is obtained for
the parametric conductance velocity13 for a quantum dot
connected to two single-channel leads. The same is valid
for symmetric cavities.

The results obtained in this paper can serve as a mo-
tivation to extend the analysis of Ref. 15 to study the
distribution of the transmission derivative with respect
to shape deformations, as well as to motivate the analy-
sis of the distribution of the parametric derivative of the
reflection coefficient.
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APPENDIX A: THE COEFFICIENTS M(α, β, γ, δ)

Applying the result (6.3) of Ref. 26 to our case, we
can write Eq. (28) as

M(α, β, γ, δ) = Au1 + Bu2 + Cu3 + Du4 + Eu5, (A1)

where

A =
N4 − 8N2 + 6

N2(N2 − 1)(N2 − 4)(N2 − 9)

B = − N(N2 − 4)

N2(N2 − 1)(N2 − 4)(N2 − 9)

C =
2N2 − 3

N2(N2 − 1)(N2 − 4)(N2 − 9)
(A2)

D =
N2 + 6

N2(N2 − 1)(N2 − 4)(N2 − 9)

E = − 5N

N2(N2 − 1)(N2 − 4)(N2 − 9)
.

and

u1 = a1(δ
α
γ δβ

δ δc′

α′δc′

β′) + a2(δ
α
γ δc′

δ δβ
α′δ

c′

β′)

+ a3(δ
α
γ δc′

δ δc′

α′δ
β
β′) + a4(δ

β
γ δα

δ δc′

α′δc′

β′)

+ a5(δ
β
γ δc′

δ δα
α′δc′

β′) + a6(δ
β
γ δc′

δ δc′

α′δα
β′)

+ a7(δ
c′

γ δα
δ δβ

α′δ
c′

β′) + a8(δ
c′

γ δα
δ δc′

α′δ
β
β′) (A3)

+ a9(δ
c′

γ δβ
δ δα

α′δc′

β′) + a10(δ
c′

γ δβ
δ δc′

α′δα
β′)

+ a11(δ
c′

γ δc′

δ δα
α′δ

β
β′) + a12(δ

c′

γ δc′

δ δβ
α′δ

α
β′) ,

with

a1 = 1 + δb′

a′ a2 = (1 + δb′

b δa′

b′ )δ
a′

b

a3 = (1 + δa′

b δb′

a′)δb
b′ a4 = (1 + δb′

a′)δb
a

a5 = (δa′

b + δb′

b δa′

b′ )δ
b
aδa′

a a6 = (δb′

b + δa′

b δb′

a′)δb
aδa

b′

a7 = (δa′

a + δb′

a δa′

b′ )δ
a
b δb

a′ a8 = (δb′

a + δa′

a δb′

a′)δa
b δb

b′

a9 = (1 + δb′

a δa′

b′ )δ
a′

a a10 = (1 + δa′

a δb′

a′)δb′

a

a11 = (1 + δb′

a δa′

b )δa′

a δb′

b a12 = (1 + δa′

a δb′

b )δb′

a δa′

b

. (A4)

The coefficients uj , for j = 2, . . . , 5, are obtained from
u1 through appropiate place permutations of the upper
indices (α, β, c′, c′) of the coefficient M of Eq. (28). u2

is obtained by the sum of the place permutactions (12),
(13), (14), (23), (24), (34), while u3 by the sum of the per-
mutations (123), (132), (124), (142), (134), (143), (234),
(243); u4 by permutations (12)(34), (13)(24), (14)(23),
and finally u5 by the place permutations (1234), (1243),
(1324), (1342), (1423), (1432). The results for u2, u3, u4,
u5 are of the same form as Eq. (A3) but with ak replaced
by coefficients that we call bk, ck, dk, ek, respectively;
they depend on sums of ak’s. We will see below that not
all them contribute to Eq. (27); then, we show only the
coefficients indexed by k = 11, 12 that are important to
that equation:

b11 = a3 + a5 + a8 + a9 + a11 + a12
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b12 = a2 + a6 + a7 + a10 + a11 + a12

c11 = a2 + a3 + a5 + a6 + a7 + a8 + a9 + a10

c12 = c11

d11 = a1 + a4 + a12 (A5)

d12 = a1 + a4 + a11

e11 = a1 + a2 + a4 + a6 + a7 + a10

e12 = a1 + a3 + a4 + a5 + a8 + a9 .

For instance, the result fot M(α, β, γ, δ) can be written
as

M(α, β, γ, δ) = m1(δ
α
γ δβ

δ δc′

α′δc′

β′) + m2(δ
α
γ δc′

δ δβ
α′δ

c′

β′)

+ m3(δ
α
γ δc′

δ δc′

α′δ
β
β′) + m4(δ

β
γ δα

δ δc′

α′δc′

β′)

+ m5(δ
β
γ δc′

δ δα
α′δc′

β′) + m6(δ
β
γ δc′

δ δc′

α′δα
β′)

+ m7(δ
c′

γ δα
δ δβ

α′δ
c′

β′) + m8(δ
c′

γ δα
δ δc′

α′δ
β
β′)

+ m9(δ
c′

γ δβ
δ δα

α′δc′

β′) + m10(δ
c′

γ δβ
δ δc′

α′δα
β′)

+ m11(δ
c′

γ δc′

δ δα
α′δ

β
β′) + m12(δ

c′

γ δc′

δ δβ
α′δ

α
β′),

(A6)

where

mk = Aak + Bbk + Cck + Ddk + Eek, k = 1, . . . , 12.
(A7)

From Eq. (A6) we costruct the coefficients M(α, β, c, c),
M(c, c, α, β), take the difference of them and sum with
respect to c, c′. The result is given by Eq. (29), where

n1 = m11 + m12 (A8)

n2 = m2 − m3 − m9 + m10 − Nm11 (A9)

n3 = m2 − m3 − m9 + m10 + Nm12 . (A10)

Eq. (27) with the help of Eq. (29) leads to Eq. (31),
the result being dependent on n1, and n2, n3 through the
difference n3 − n2 = Nn1; then, we need the coefficient
n1 only. From Eqs. (A8), (A7), (A5), we have

n1 = (A + 2B + D)(a11 + a12) + 2(D + E)(a1 + a4)

+ (B + 2C + E)(a2 + a3 + a5

+ a6 + a7 + a8 + a9 + a10). (A11)

With the help of Eqs. (A2), (A4) n1 is written as Eq.
(30).
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